Cross-sectional assessment of virological failure, drug resistance and third-line regimen requirements among patients receiving second-line ART in 3 large HIV-programmes in Kenya, Malawi and Mozambique

B. Schramm1, V. Carminio1, A. Rakesh1, D.L. Ardiet1, L. Cossa2, O. Bouchaud3, A. Aliouf1, W.L. Oo4, P. Gonzalez Diaz4, I. Mukuyi5, W. Omwoyo5, R. Manuel5, A.M. de Pedro5, A. Teillev6, C. Chiraha5, B. Chilima7, S. Nicolas3, A. Vilib1, B. Serrano7, V. Opoloi7, C. Zeh10, M. Peeters11, L. Molfino9, A. Vandebulcke2, I. Amorosi12, J.F. Etard12, M. Pujades Rodriguez12, S. Balk13, E.Suzim11

1Epicentre, Paris; 2Médecins sans frontières, Malawi; 3Médecins sans frontières, Mozambique; 4Service des Maladies Infectieuses et Tropicales, CHU Avicenne, Assistance Publique-Hôpitaux de Paris et Université Paris, 13; 5Médecins sans frontières, Kenya; 6National AIDS and STIs Control Programme, Kenya; 7Ministry of Health, Kenya; 8Ministry of Health, Mozambique; 9Médecins sans frontières, Switzerland; 10Ministry of Health, Malawi; 11Instituto Nacional de Saúde, Mozambique; 12UMI 233 institut de recherche pour le développement-Université de Montpellier; 13Centers for Disease Control and Prevention, Kisumu, Kenya; 14Maters sans frontières, France; 15Geeds Institute of Biomedical and Clinical Sciences, University of Leeds,

Contact: Birgit.Schramm@epicentre.msf.org

Introduction

Study design

1. Cross-sectional assessment
2. Participant recruitment
3. Viral load measurement (VL)
4. Resistance genotyping
5. ART regimen adaptation based on resistance profile
6. Follow up for 6 months after failure & EAC

Eligibility criteria

Age ≥ 2 years

Results

Participant characteristics at inclusion

<table>
<thead>
<tr>
<th>Study sites</th>
<th>Eligible, N</th>
<th>Included, N</th>
<th>Mean age, year (SD)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>705</td>
<td>355</td>
<td>36.6 (±10.7)</td>
<td>95%</td>
</tr>
<tr>
<td>Malawi</td>
<td>254</td>
<td>342</td>
<td>35.6 (±10.4)</td>
<td>98%</td>
</tr>
<tr>
<td>Mozambique</td>
<td>205</td>
<td>205</td>
<td>36.4 (±10.7)</td>
<td>98%</td>
</tr>
</tbody>
</table>

Viral load at inclusion

<table>
<thead>
<tr>
<th>Study sites</th>
<th>HIV RNA, cps/mL</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>>20000</td>
<td>500 (72%)</td>
</tr>
<tr>
<td>Malawi</td>
<td>>20000</td>
<td>500 (72%)</td>
</tr>
<tr>
<td>Mozambique</td>
<td>>20000</td>
<td>500 (72%)</td>
</tr>
</tbody>
</table>

HIV subtypes

Study sites: Kenya: HIV-1B prevalent; Malawi: HIV-1A prevalent; Mozambique: HIV-1C prevalent.

ART regimen composition for patients with failure (Kenya)

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>ART regimen</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment group</td>
<td>ART regimen</td>
<td>N (%)</td>
</tr>
<tr>
<td>Treatment group</td>
<td>ART regimen</td>
<td>N (%)</td>
</tr>
</tbody>
</table>

Six month follow up VL results after failure (Kenya site)

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>6 Month FU - VL available</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment group</td>
<td>6 Month FU - VL available</td>
<td>N (%)</td>
</tr>
<tr>
<td>Treatment group</td>
<td>6 Month FU - VL available</td>
<td>N (%)</td>
</tr>
</tbody>
</table>

Discussion

- Overall good virological suppression was achieved on second-line ART, especially in Kenya and Malawi.
- Two-thirds of patients with virological failure required regimen optimization or switch to third-line.
- One third of patients had no major drug resistance - indicating very poor adherence.
- ART Regimen adaptation for patients with failure was through re-cycling of standard of ARTs as well as by use of new generation ARVs.
- Notably higher failure rates found in children and adolescents, highlighting the need for enhanced monitoring.
- Considerable cross-resistance to efavirenz was found.
- Preliminary data indicate good short-term outcomes of patients receiving optimized third-line ART.
- Resistance data were essential to inform ART regimen choice of patients with second-line failure.
- Better access to resistance genotyping and new generation ARVs are urgently needed.

Acknowledgements: We thank the study- and MSF teams in the field sites, the Ministries of Health and the study participants for their support, and SIDACTION for co-funding (A04-120223).

Methods

Study sites

- Kenya: HIV-outpatient clinic in Homa Bay District Hospital
- Malawi: Chiradzulu District, 3 peripheral health centers
- Mozambique: Maputo City, Chaminhau Health District, Alto Mac Rero Referral Health Centre

Sample size: 40-50% of eligible patients per site

Sampling: random (Kenya, Mozambique), convenience (Malawi)

Primary objectives

- To determine the proportion of patients with virological failure
- To describe the drug resistance patterns

Secondary objective

- To assess outcomes at 6 and 12 months after virological failure

Inclusion period: November 2014 - August 2015

HIV viral load in plasma: Kenya and Mozambique: automated real-time PCR using the Cobas Ampliprep/Cobas Taqman HIV-1 test v.2.0 (Roche Diagnostic); Malawi: G2 Generic real-time PCR assay (Bioanalyzer)

HIV-1 resistance genotyping: Subtype determination and resistance was done for patients with VL >500 cps/ml by sequencing protease and part of reverse transcriptase regions with a WHO-acknowledged broadly sensitive in-house assay for HIV-1 non-B strain. Drug resistance scoring was done by applying the Stanford HIVdb Genotypic Resistance Interpretation Algorithm (Version 7.0, last updated 02/27/14).

Definitions:

- Virological failure: VL ≥ 500 cps/mL
- Second-line ART based boosted protease inhibitor (PI) combined with two NRTIs
- Optimized second-line regimen: substitution of one or both NRTIs due to resistance
- Third-line regimen: replacement of the PI due to PI resistance, when or without replacement of NRTI(s)

Introduction

Study design

1. Cross-sectional assessment
2. Participant recruitment
3. Viral load measurement (VL)
4. Resistance genotyping
5. ART regimen adaptation based on resistance profile
6. Follow up for 6 months after failure & EAC

Eligibility criteria

Age ≥ 2 years

Related study

- Malawi: all sequenced strains were subtype C
- Mozambique: 90% were subtype C
- Kenya: were subtype C, most were either A, URFa and/or A2

Results

- The majority were adults aged 34-38 years
- In Kenya and Mozambique all patients received a boosted lopinavir (LPV/r)-regimen
- In Malawi 82% of patients received a boosted atazanavir (ATV/r)-regimen
- Malawian patients on second-line ART at inclusion ranged between 2.2-2.5 years
- Most patients were in overall good clinical condition at inclusion (stage 1H or 2)

Intermediate & high-level resistances by ARV drug

- 12-17% had ≥1000 cps/mL (WHO-recommended virological failure threshold)
- This translates into overall good suppression (<1000 cps/mL, 83% (Kenya), 67% (Malawi), 72% (Mozambique))
- Virological failure was eight times as high among <19 years patients in all sites
- Resistance genotyping was performed on VL ≥500 cps/mL (N=65, N=41, N=61)

ART regimen requirements among patients with failure

- 20-32% of patients with virological failures needed switch to a third-line regimen (major PI resistance)
- 22-32% patients required optimization of their second-line regimen (major NRTI resistance)
- 34-41% were still on an effective regimen
- In Kenya patients with virological failure without major resistance (37%) were changed to a simplified ATV/r-based regimen to support adherence

Six month follow up VL results after failure (Kenya site)

- Overall good virological suppression was achieved on second-line ART, especially in Kenya and Malawi.
- Two-thirds of patients with virological failure required regimen optimization or switch to third-line.
- One third of patients had no major drug resistance - indicating very poor adherence.
- ART Regimen adaptation for patients with failure was through re-cycling of standard of ARTs as well as by use of new generation ARVs.
- Notably higher failure rates found in children and adolescents, highlighting the need for enhanced monitoring.
- Considerable cross-resistance to efavirenz was found.
- Preliminary data indicate good short-term outcomes of patients receiving optimized third-line ART.
- Resistance data were essential to inform ART regimen choice of patients with second-line failure.
- Better access to resistance genotyping and new generation ARVs are urgently needed.

Acknowledgements: We thank the study- and MSF teams in the field sites, the Ministries of Health and the study participants for their support, and SIDACTION for co-funding (A04-120223).