





# Where Life Begins at Risk!

# Neonatal Morbidity and Mortality Patterns in Conflict Affected Setting Al-Salam Hospital, Khamer, Amran-Yemen, 2023 A Retrospective Descriptive Study

Rihana Abdulmoghni<sup>1,</sup> Elisabeth Poulet<sup>2</sup>, Alain Ngamba<sup>1</sup>, Rami Malaeb<sup>3</sup>

<sup>1</sup> Médecins Sans Frontières, OCP, Sanaa, Yemen, <sup>2</sup> Department of Epidemiology & Training, Epicentre, Paris, France, <sup>3</sup> Department of Epidemiology & Training, Epicentre, Dubai, UAE

## **BACKGROUND**

- ☐ In 2022, Yemen's neonatal mortality rate (NMR) was 22 per 1,000 live births, exceeding the global rate of 17
- ☐ Since 2015, war and siege have strained healthcare access and infrastructure, harming neonatal and maternal health.
- ☐ Al Salam MSF Hospital (2018 2023)

607 neonatal deaths (15%) out of 4,058 neonatal admissions

## **OBJECTIVES**

- ☐ **Primary Objective:** describe the neonatal mortality and morbidity at Al-slam hospital neonatal inpatient department (NIPD)
- ☐ Secondary Objectives:
- Identify leading factors of in hospital mortality and their prevalence among study cohort (inborn & outborn)
- Examine mother factors to neonatal outcomes among inborn neonates

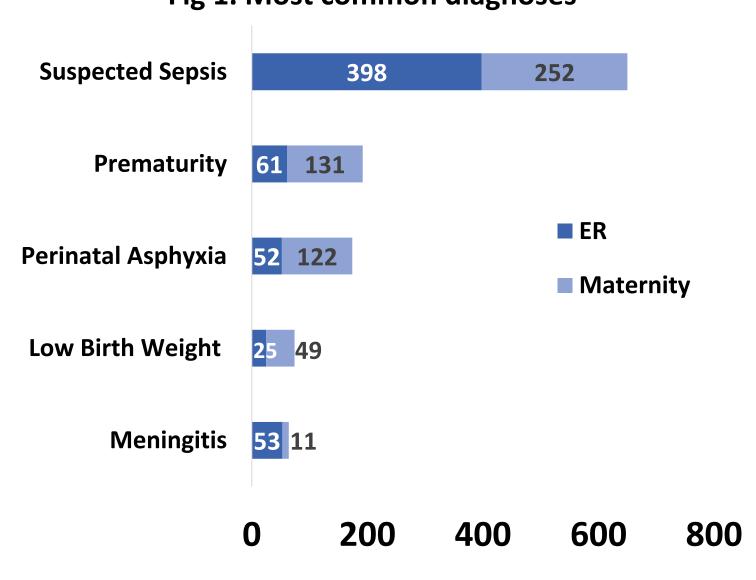
# **METHODS**

- ☐ Study design: Retrospective hospital-based analysis
- ☐ **Study Population:** All neonates admitted to Al-Salam Hospital NIPD, Amran governorate, Yemen in 2023 (n= 906)
- ☐ Data Collection: Extracted from patient files, anonymized and recorded in REDCap
- ☐ Data Analysis: Descriptive statistics and univariate/bivariate analysis analyzed using R studio

## RESULTS

#### **Demographic & Baseline Characteristics**

#### Table 1. Neonatal characteristics by admission source 2023

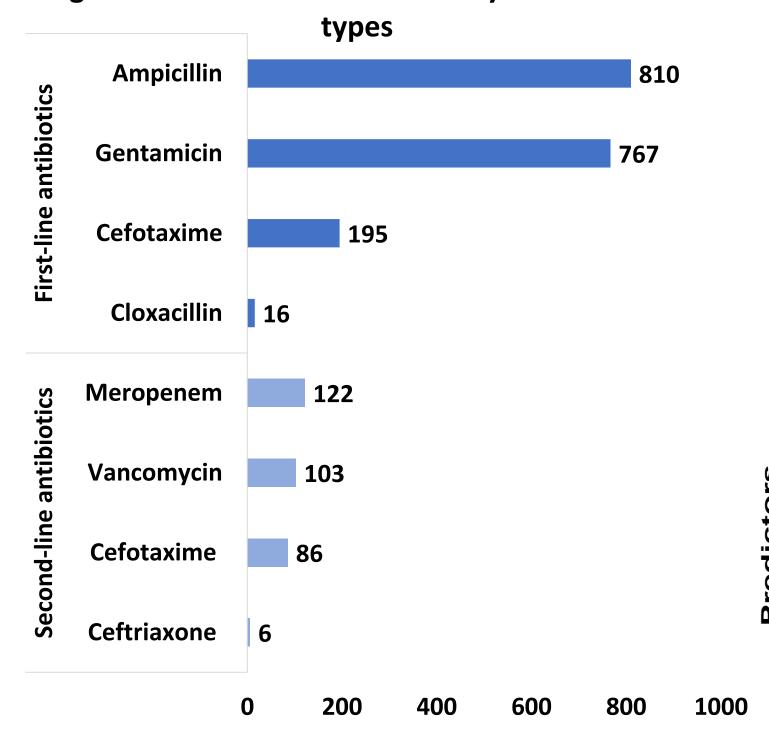

| Characteristic                   | ER<br>(outborn) | Maternity<br>(Inborn) | Overall   | p-value |
|----------------------------------|-----------------|-----------------------|-----------|---------|
|                                  | n = 486         | n = 420               | N = 906   |         |
| Sex, n (%)                       |                 |                       |           | 0.2     |
| Female                           | 204 (42)        | 194 (46)              | 398 (44)  |         |
| Male                             | 282 (58)        | 226 (54)              | 508 (56)  |         |
| Age at admission (days)          |                 |                       |           | <0.001  |
| Median (IQR)                     | 5 (2, 15)       | 0 (0, 0)              | 1 (0, 6)  |         |
| Weight at admission (KG)         |                 |                       |           | 0.003   |
| Median (IQR)                     | 2.6 (2, 3)      | 2.4 (1.7,             | 2.5 (1.8, |         |
|                                  |                 | 2.9)                  | 3)        |         |
| Gestational Age<br>(weeks), n(%) |                 |                       |           | <0.001  |
| Pre-term (≤37 weeks)             | 122 (27)        | 176 (42)              | 298 (34)  |         |

ER = Emergency room; IQR = Interquartile range

## Most common diagnoses by admission source

- ☐ 55% of neonates (n = 499) had a single diagnosis; 45% (n = 407) had multiple
- ☐ Sepsis was most common, 61% (398/650) of sepsis admitted via ER
- ☐ About 70 % (131/192) of premature admitted from maternity
- ☐ 70% (n = 122/174) of perinatal asphyxia cases were admitted from maternity

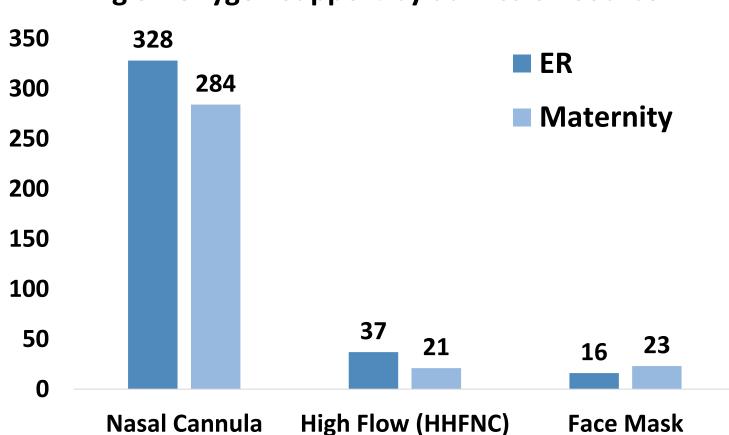
# Fig 1. Most common diagnoses




#### **Treatment: Antibiotic & Oxygen Therapy**

#### Prescription of antibiotics and antibiotic types

- ☐ During hospitalization, 96% (n = 873) of neonates received antibiotic
- ☐ Ampicillin (89%) and Gentamicin (85%) were the most common first-line antibiotics
- ☐ Meropenem (39%) and Vancomycin (32%) were the leading second-line choices

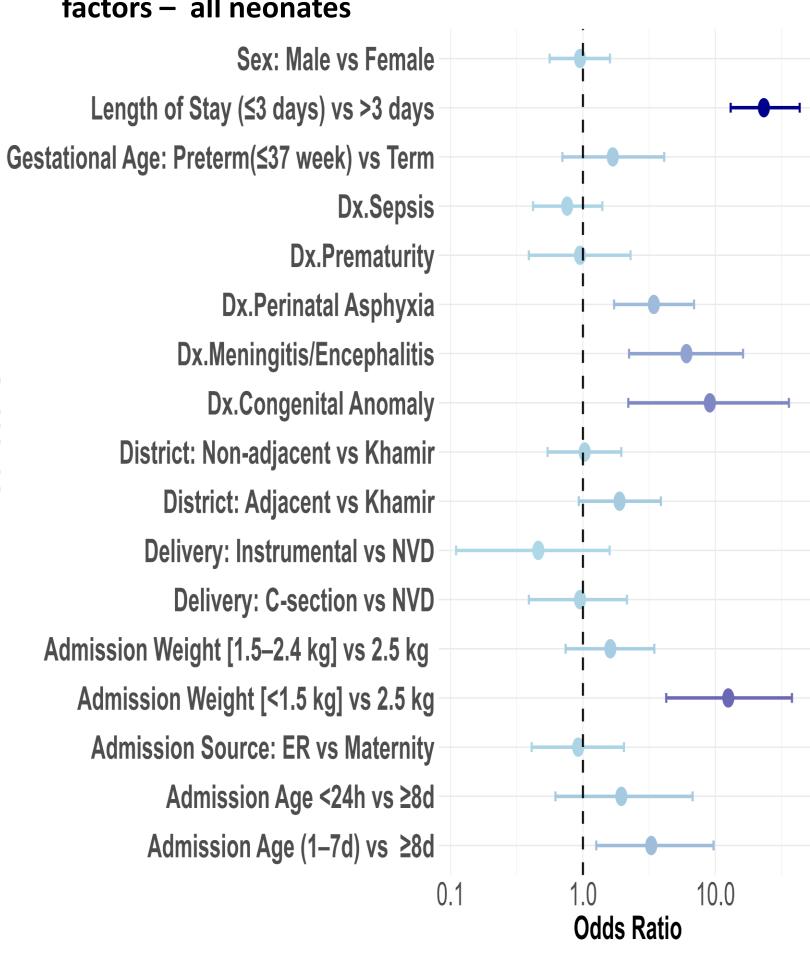

Fig 2. Distribution of neonates by of antibiotics



## **Oxygen Support**

- ☐ Among 906 cases 72.9% (606) received oxygen
- ☐ Nasal cannula was the primary method used
- ☐ HHFNC(Humified High Flue Nasal Cannula) was primarily utilized for ER/ outborn neonates

Fig 3. Oxygen support by admission source




# In-hospital Neonatal Mortality Risk Factors – all Neonates (Inborn & Outborn)

# ☐ In-hospital NMR was 15 per 100 live births (135/906; 95% CI: 13–17)

- ☐ Increased mortality risk among:
- ☐ Short length of stay (≤3 days)
- ☐ Very low birth weight (<1500 g)</li>☐ Perinatal asphyxia
- ☐ Meningitis/Encephalitis
- ☐ Congenital anomalies
- ☐ Admission age (1–7 days)

# Fig 4. Forest plot of in-hospital neonatal mortality risk factors – all neonates



# Maternal-related Risk Factors for in-Hospital Neonatal Mortality among Inborn Neonate

Table 2. Maternal Risk Factors Associated with in-hospital Neonatal Mortality

| Variable                                    | Adj. OR (95% CI) | p-value |
|---------------------------------------------|------------------|---------|
| Maternal age 35-39 vs 20-34                 | 0.25 (0.06–0.86) | 0.041   |
| Abortions ≥3 vs 0                           | 9.29 (2.03–45.2) | 0.004   |
| 1st stage labor (Cx 4-10) vs<br>2nd (Cx=10) | 0.32 (0.11–0.86) | 0.029   |

## CONCLUSIONS

In 2023, MSF-supported Al-Salam Hospital in Amran governorate experienced high neonatal admissions and mortality rates, reflecting critical challenges in neonatal care.

# Recommendations

- Allocate additional resources to enhance neonatal care infrastructure, staffing, and training
- Prioritize improved respiratory support, particularly for preterm neonates and those with perinatal asphyxia
- Implement rational and evidence-based **antibiotic regimens** to combat sepsis while mitigating antibiotic resistance
- Regularly evaluate neonatal outcomes to identify gaps and improve care protocols