Rotavirus vaccine efficacy up to 2 years of age and against diverse circulating rotavirus strains in Niger: Extended follow-up of a randomized controlled trial.

Isanaka S Langendorf C McNeal MM Meyer N Plikaytis B Garba S Sayinzoga-Makombe N Soumana I Guindo O Makarimi R Scherrer MF Adehossi E Ciglenecki I Grais RF
PLoS medicine 2021 Jul ; 18(7); e1003655. doi: 10.1371/journal.pmed.1003655. Epub 2021 07 02


BACKGROUND: Rotavirus vaccination is recommended in all countries to reduce the burden of diarrhea-related morbidity and mortality in children. In resource-limited settings, rotavirus vaccination in the national immunization program has important cost implications, and evidence for protection beyond the first year of life and against the evolving variety of rotavirus strains is important. We assessed the extended and strain-specific vaccine efficacy of a heat-stable, affordable oral rotavirus vaccine (Rotasiil, Serum Institute of India, Pune, India) against severe rotavirus gastroenteritis (SRVGE) among healthy infants in Niger.

METHODS AND FINDINGS: From August 2014 to November 2015, infants were randomized in a 1:1 ratio to receive 3 doses of Rotasiil or placebo at approximately 6, 10, and 14 weeks of age. Episodes of gastroenteritis were assessed through active and passive surveillance and graded using the Vesikari score. The primary endpoint was vaccine efficacy of 3 doses of vaccine versus placebo against a first episode of laboratory-confirmed SRVGE (Vesikari score ≥ 11) from 28 days after dose 3, as previously reported. At the time of the primary analysis, median age was 9.8 months. In the present paper, analyses of extended efficacy were undertaken for 3 periods (28 days after dose 3 to 1 year of age, 1 to 2 years of age, and the combined period 28 days after dose 3 to 2 years of age) and by individual rotavirus G type. Among the 3,508 infants included in the per-protocol efficacy analysis (mean age at first dose 6.5 weeks; 49% male), the vaccine provided significant protection against SRVGE through the first year of life (3.96 and 9.98 cases per 100 person-years for vaccine and placebo, respectively; vaccine efficacy 60.3%, 95% CI 43.6% to 72.1%) and over the entire efficacy follow-up period up to 2 years of age (2.13 and 4.69 cases per 100 person-years for vaccine and placebo, respectively; vaccine efficacy 54.7%, 95% CI 38.1% to 66.8%), but the difference was not statistically significant in the second year of life. Up to 2 years of age, rotavirus vaccination prevented 2.56 episodes of SRVGE per 100 child-years. Estimates of efficacy against SRVGE by individual rotavirus genotype were consistent with the overall protective efficacy. Study limitations include limited generalizability to settings with administration of oral polio virus due to low concomitant administration, limited power to assess vaccine efficacy in the second year of life owing to a low number of events among older children, potential bias due to censoring of placebo children at the time of study vaccine receipt, and suboptimal adapted severity scoring based on the Vesikari score, which was designed for use in settings with high parental literacy.

CONCLUSIONS: Rotasiil provided protection against SRVGE in infants through an extended follow-up period of approximately 2 years. Protection was significant in the first year of life, when the disease burden and risk of death are highest, and against a changing pattern of rotavirus strains during the 2-year efficacy period. Rotavirus vaccines that are safe, effective, and protective against multiple strains represent the best hope for preventing the severe consequences of rotavirus infection, especially in resource-limited settings, where access to care may be limited. Studies such as this provide valuable information for the planning of national immunization programs and future vaccine development.